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Abstract

A numerical method for the simulation of the effect of melt flow on the three-dimensional growth of a dendrite is

described. The method is an extension of the technique for two-dimensional flow described in Al-Rawahi and Try-

ggvason [J. Comput. Phys. 180 (2002) 471] and is based on the explicit tracking of connected marker points that de-

scribe the liquid–solid interface. An explicit projection method is used to solve the energy and the Navier–Stokes

equations on a regular stationary grid and the solidified region is represented by setting the velocities in the solid phase

to zero. The latent heat released during solidification is calculated using the normal temperature gradient near the

interface. The method is validated by a comparison with an exact solution for a Stefan problem and a grid refinement

study. The simulations show that the speed of a dendrite arm growing into the flow is increased due to an increase in the

temperature gradient on the upstream side and the formation of side branches is promoted, as in two-dimensions. The

effect of the flow on the growth of dendrite arms growing in the downstream direction is smaller than in two-dimen-

sions, due to a smaller wake.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

The relation between the properties of metals and their microstructure is one of the fundamental

problems in material science. The identification and classification of microstructures is mostly based on

observations and the dependency of the microstructure on the process parameters is still poorly understood.

While dendritic microstructures generally form because of constitutional undercooling in alloys, pure

materials can form transient dendritic microstructure during solidification. It is well known that fluid flow

can have significant effect on the morphology of the microstructure and a number of experimentalists have
quantified this effect (see Glicksman, [2], for example). In this paper we describe a numerical method to

simulate the effect of flow on the growth of transient dendritic microstructures in pure materials.
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Theoretical solutions for dendritic growth are limited to very simple situations and numerical

simulations are playing an increasing role in studies of dendrites. Simulations of the growth of two-

dimensional dendrites without flow are now common and a number of simulations of the growth of three-
dimensional dendrites in the absence of fluid motion are available. Detailed review of simulations of

two-dimensional systems can be found in Nabeel and Tryggvason [1] where two-dimensional simulations of

the effect of flow are discussed, and in Zhao et al. [3] who present two-dimensional simulations of binary

alloys. The first simulation of a three-dimensional dendrite was published by Kobayashi [4], who used a

phase field method and who studied the effect of surface tension anisotropy on the morphology of the

dendrite. Another phase field method was presented by Karma and Rappel [5,6], who compared their

results to the predictions of solvability theory. Schmidt [7] used a finite element method and two inde-

pendent grids for the melt and the solid. A combined phase field/Monte Carlo method was developed by
Plapp and Karma [8] to simulate dendritic solidification in the low undercooling limit and simulations using

level-sets to track the interface are presented by Gibou et al. [9,10].

Simulations that include fluid flow are limited to a few simulations of two- and fully three-dimensional

dendrites. Phase field methods have been extended to simulate the growth of two-dimensional dendrites

with melt flow by Tonhardt and Amberg [11] and Beckerman et al. [12]. Tonhardt and Amberg studied

the effect of shear flow on dendritic growth from a solid wall by modeling the solid as a fluid that was 100

times more viscous than the melt. Beckerman et al. examined the growth of a single dendrite in a uniform

flow and held the solid in place by a force field added to the momentum equations. Finite element
simulations were presented by Bansch and Schmidt [13] who modeled the solid and the fluid domain with

separate grids and explicitly enforced the no-slip boundary condition at the interface. A method using a

regular grid that is modified locally to align with the interface has been introduced by Udaykumar et al.

[14]. Juric [15] used a front tracking method to simulate the effect of shear flow on dendritic growth. He

calculated the heat source by an iterative scheme and modeled the solid as a fluid with a viscosity that was

100 times that of the liquid. Al-Rawahi and Tryggvason [1] presented an improved front tracking method

in which the heat source is found directly from the temperature gradient near the interface and the no-slip

boundary condition is enforced by directly setting the velocity in the solid to zero. The studies described
above have all been limited to two-dimensional systems. Methods for the simulations of fully three-di-

mensional growth of a dendrite in the presence of melt flow, using the approach of Beckerman et al. [12],

were recently presented by Jeong et al. [16,17] and Lu et al. [18] (see also [19]). Jeong et al. pointed out

that the flow structure behind a fully three-dimensional dendrite is quite different than behind a two-

dimensional one.

In this paper we extend the front tracking method developed by Al-Rawahi and Tryggvason [1] – here

referred to as part I – to fully three-dimensional flows. After reviewing briefly the governing equations we

describe the numerical implementation, focusing on those aspects that are different for three-dimensional
flow. Then we show a few examples of simulations done using the new method.
2. Formulation

The mathematical model solved here is essentially the same as in Part I. The problem setup is sketched in

Fig. 1. Undercooled liquid enters through the left boundary of a cubical domain and flows past a dendrite

growing in the center. As the liquid solidifies and the dendrite grows, the geometry of the solid/liquid
boundary changes. The whole domain is resolved by a single fixed grid and one set of equations is used for

both the liquid and the solid. The phase boundary is treated as an imbedded interface by adding the ap-

propriate source terms as delta functions to the conservation laws. The temperature is found by solving the

energy equation



Fig. 1. The initial setup used for the simulations presented in this paper. A solid seed is located at the center of the cubical domain and

uniform undercooled liquid enter through the left boundary with a velocity equal to the Peclet number. Weak conditions are imposed

on the outlet flow and periodic boundary conditions are used for the front and back, as well as the top and bottom boundaries.

N. Al-Rawahi, G. Tryggvason / Journal of Computational Physics 194 (2004) 677–696 679
oqcpT
ot

þr � ðqcpT uÞ ¼ r � krT þ
Z
F
_qdðx� xfÞda; ð1Þ

where we have assumed that the fluid is incompressible and that viscous heating can be neglected. u is the

fluid velocity (equal to zero in the solid), q and cp are the density and heat capacity, respectively, k is

the thermal conductivity and xf is the front location. The integral term is the heat liberated during

solidification and the source strength _q is related to the normal velocity of the phase boundary Vn and the

latent heat L by

_q ¼ qLVn: ð2Þ

The motion of the phase boundary is found by integrating

dxf

dt
¼ Vnn; ð3Þ

where n is the normal vector to the phase boundary. To find the heat source and thus the normal velocity,

we integrate the energy equation across the phase boundary. The result is that the heat released by the

motion of the front must be balanced by heat conduction from the front:

_q ¼ ksolid
oT
on

�
solid

� kliquid
oT
on

�
liquid

: ð4Þ

The interface temperature satisfies the Gibbs–Thompson relation

Tf ¼ Tm 1

�
� c
qL

j

�
� Vn

g
: ð5Þ

Here, c is the surface tension, g is the kinetic mobility and j is the curvature. The surface tension and the

kinetic mobility are generally anisotropic and we use
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c ¼ c0ð1� Asð4ðn41 þ n42 þ n43Þ � 3ÞÞ;
1

g
¼ 1

g0
ð1� Akð4ðn41 þ n42 þ n43Þ � 3ÞÞ:

ð6Þ

In Eq. (6), As and Ak quantify the anisotropy of the surface tension and the inverse of the kinetic mobility,

respectively, n1, n2 and n3 are the components of the normal unit vector along the axes of growth, calculated

at each point on the interface. This form of the anisotropy sets six preferred directions of growth, resulting

in a six folds dendrite. For the simulations presented here the axes of growth are in the coordinate di-

rections, so ðn1; n2; n3Þ ¼ ðnx; ny ; nzÞ. This form is similar to the one used by Schmidt [7] and Muschol et al.

[20]. Other expressions have been used for the anisotropy, see [16], but as discussed by Juric and Try-

ggvason [21] the effects are generally similar.
The fluid motion is governed by the Navier–Stokes equations:

ouliquid

ot
þr � uliquid uliquid ¼ �rp þ mr2uliquid ð7Þ

and the velocity in the solid is zero

usolid ¼ 0: ð8Þ

Here, m is the kinematic viscosity and p is the pressure. The fluid is assumed to be incompressible and the
density of the solid and the liquid are taken to be the same. Volume contraction and expansion, as well as

fluid convection due to buoyancy are thereby neglected. Since density is constant, we have redefined

pressure as the pressure divided by the density. Since the governing equations are solved on a single grid, we

define a velocity field everywhere in the domain by

u ¼ /uliquid: ð9Þ

/ðxÞ is an indicator function defined by

/ ¼ 0 in the solid;
1 in the liquid;

�
ð10Þ

and varies smoothly between zero and one in the interface region. The mass conservation equation for the

whole domain reduces to:

r � u ¼ 0: ð11Þ

The thermal conductivity and the specific heat of each phase are assumed to be constant in each phase, but

can be different in the solid and the liquid.

The nondimensional parameters governing this problem have been discussed in Part I and the definitions
of the various nondimensional numbers are given in Table 1, along with the scaling for time and length.
3. Numerical implementation

The energy equation and the momentum equation are solved on a single regular stationary grid that

covers both the liquid and the solid region. The phase boundary is represented by moving marker points,

connected by elements to form a two-dimensional front that cuts through the three-dimensional stationary
mesh. The front is used to advect the discontinuous material property fields and to calculate the heat

source.



Table 1

Nondimensional parameters. Here, cp is the heat capacity, DT is the undercooling, L the latent heat, k the heat conductivity, U the

inflow velocity, l the fluid viscosity, q the density, c0 the surface tension and TM the melt temperature for a flat phase boundary

Nondimensionalization:

Length: d0 ¼ Tmc0cp
qL2 ; Time: s ¼ d2

0

qcp
k ; Velocity: u0 ¼

d0
s ¼ k

d0qcp

Nondimensional numbers:

Stefan number St ¼ cp DT
L Prandtl number Pr ¼ k

cp l

Peclet number Pe ¼ kUd0
cp

Stability parameter: r� ¼ 2
VtipR2

tip

kd2
0

qcp
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3.1. Solving the conservation equations

To discretize the energy equation and the momentum equations we use a conservative, second order,
centered difference scheme for the spatial variables. For the simulations presented here we have used a first

order explicit time integration method. As discussed in Part I, it is straightforward to extend the method to

second order, using a predictor-corrector scheme. For details of the discretization, see Part I, as well as

Tryggvason et al. [22]. At the inflow boundary (left) of the computational domain the velocity and a

temperature equal to the undercooling temperature are specified, the top and bottom boundaries are pe-

riodic, and the fluid is allowed to flow freely out through the right boundary by putting the gradient of

temperature and velocity to zero.

The main challenge in solving one momentum equation on a single grid resolving both the fluid and the
solid is the enforcement of a zero velocity in the solid. As discussed in Part I, several authors have rep-

resented solids on fixed grids by finding the forces needed to hold them in place. Generally, it is necessary to

use an iterative method to find the force. However, it has recently become clear that the computations can

be simplified with minimal loss of accuracy (see Fadlun et al. [23], for example) by simply setting the ve-

locity in the solid to zero (if the solid is stationary). This can be accomplished by a slight modification of

the standard projection scheme. First we split the Navier–Stokes equations in the usual way; calculate the

unprojected velocity, uup, set it equal to zero in the solid, and solve for the pressure. Then we add the

pressure gradient, multiplied by / to the unprojected velocity:

uup ¼ /ðun þ DtAðunÞÞ;

r2P ¼ 1

Dt
r � uup;

unþ1 ¼ uup � Dt/rP :

ð12Þ

Here, A is the discrete advection and diffusion terms. We have also found that instead of using the index

function / directly, using /2 helps keep the phase boundary sharper. This is similar to the use of non-

symmetric weighting by Beckermann et al. [12]. A test of how well this approach works for a well-defined

geometry is presented in Section 4.

The index function / is constructed by distributing the jump in / onto the fixed grid and integrating as

described in Part I. Since we use explicit time integration for the energy and momentum equations, as well

as for advecting the front, the size of the time step is limited by the criteria discussed in Part I. For the
parameters used here, the most severe limitation comes from the diffusion part of the energy or the mo-

mentum equation.

3.2. The front

The connected marker particles – the front – are used to advect the discontinuous material property

fields and to calculate the heat released during the solidification. Although the basic numerical
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implementation of the front is the same as in Part I, there are a few differences since the three-di-

mensional front is a surface instead of a curve. In the present simulations the front is represented by

moving marker points, connected by triangular elements to form a two-dimensional front that lies on
the three-dimensional stationary mesh. Fig. 2 shows the front structure and the different quantities

stored for the front points and elements. Each element has pointers to the corner points and to the

three adjacent elements. For each point its coordinates are stored. In addition, the elements and the

points are logically connected by a linked list that identifies the previous and next element and points.

The order of points and elements in the linked list is arbitrary. In addition to facilitate looping over the

front points and elements, the linked list data structure simplifies the adding and deletion of points and

elements as the front grows and deforms.

To compute the temperature at the center of each element (Eq. (5)) it is necessary to know the local mean
curvature. To find the mean curvature for each element we first compute the total force on each element due

to surface tension

dF ¼ r
Z
dA
jndA: ð13Þ

Since the mean curvature of a surface can be written as

jn ¼ ðn�rÞ � n; ð14Þ

Eq. (13) can be written as

dF ¼ r
Z
dA
jndA ¼ r

Z
dA
ðn�rÞ � ndA ¼ r

I
s

t� nds: ð15Þ

Here, t is the vector tangent to the edge of the element, n is the normal vector to the element, and S is the
contour bounding an element. The cross product is a vector that lies in the surface and is normal to the edge

of the element. The product of the surface tension and this vector gives the pull on the element edge and the

net force is obtained by integrating it around the perimeter of the element. To ensure that the total force is

conserved, the vector obtained by the cross product for each edge is averaged between the two elements that
Element

1

1

2

3

3

2

Pointers to adjacent
elements

Pointers to end
points

Element

n(i)= L1× L2

L1

L2

Fig. 2. A sketch of one element of the three-dimensional front (left), showing the information stored for each element. The right-hand

side figure shows how the normal of each element is calculated from the cross product of any two of the three element edges.
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share the edge. When the surface tension is constant, the net force is normal to the element. The net force on

each element is also equal to the force calculated using the average mean curvature of each element:

dF ¼ rjdAn: ð16Þ

Here, dA is the area of the element. Equating the force computed by Eqs. (15) and (16) we get

j ¼ 1

dA

I
s

t� nds � n; ð17Þ

where we have taken the dot product of Eq. (15) to get the normal component. This definition of the mean

curvature (where the limit of dA ! 0, is taken) can also be found in Wetherburn [24]. The unit normal
vector for each element is found by taking the cross product of any two edges of an element as shown in

Fig. 2, scaled to unit length, and the area of each element is found as half the absolute value of the cross

product of the edges. Once the curvature has been found, it is used to compute the temperature at the center

of each front element using Eq. (5).

To determine the velocity of the front, we first need to find the heat source, using Eq. (4). We first find

the heat source at the center of each element. To find the temperature gradients on either side of the front

we follow Udaykumar et al. [14] and draw a normal line (or a ‘‘probe’’) from the element centers to points

at x � h away from the front:

x� ¼ x1 � xhnx;

y� ¼ y1 � xhny ;

z� ¼ z1 � xhnz;

ð18Þ

where the plus (+) sign applies to the liquid side, and the minus ()) sign applies to the solid side, and nx, ny
and nz are the components of the unit vector normal to the element center. Here, h is the grid spacing and x
is an adjustable parameter. x ¼ 1.2 was found to give the highest accuracy as discussed in Part I. The

temperatures at ðx�; y�; z�Þ are then found from the temperatures of the surrounding grid points, Tijk, using
interpolation:

T� ¼
X
ijk

TijkFijk x�� �
: ð19Þ

Here the weighing parameter Fijkðx�Þ is given by

Fijk x�� �
¼ dðx� � ihÞdðy� � jhÞdðz� � khÞ; ð20Þ

where, dðrÞ is a one-dimensional volume-weighing function

dðrÞ ¼ ðh� jrjÞ=h; jrj < h;
0; jrjP h:

�
ð21Þ

Using the temperatures Tþ and T� from Eq. (19) the heat source is found by

_q ¼ 1

h
ksðT�ð � TfÞ � klðTf � TþÞÞ; ð22Þ

where, Tf is the temperature at the front, given by Eq. (5) if the inverse of the kinetic mobility equals to zero.

If the inverse of the kinetic mobility does not equal to zero then Tf , Vn and _q must be found by solving Eqs.

(2), (5) and (22) simultaneously.

The heat source found by Eq. (22) is distributed onto the fixed grid by
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_qijk ¼
X
el

_qelFijk xelð ÞdAel=h3; ð23Þ

where xel is the coordinate of the element center, the weighing parameter Fijk is defined by Eq. (20) and dAel

is the area of each front element. For the distribution of the heat source, the weighing parameter Fijk is

calculated using Peskin�s [25] cosine weighting function, defined by

dðrÞ ¼ ð1=4hÞð1þ cosðpr=2hÞÞ; jrj < 2h;
0; jrjP 2h:

�
ð24Þ

Once the heat source is found, the locations of the front points can be updated by integrating Eq. (3) using

the same time integration scheme employed for the conservation equations. We must, however, first find the

heat source and the normal vector, which are known at the element centers, at the front points. To do this

we set up vectors containing the source strength and the associated area of each front point and initialize
those vectors to zero. Then we loop over all the elements and add one third of the total source strength (the

source strength per unit area times the area of each element) to the source strength at the corner points of

each element. We also add one third of the element area to the area associated with the point and after the

summing is done the total source strength at each point is divided by the total area associated with the point

to give the source strength per unit area. For the normal vectors we simply add the element normal vectors

of the elements connected to each point and divide by the number of elements. We have experimented with

more elaborate averaging for the normal vectors but find essentially no effect on the results.

As the front topology changes, points and elements are added and deleted to keep the front smooth. As
for the front in two-dimensions (Part I), points and elements are added or deleted when the length of any

element edge exceeds a predefined maximum or minimum length. Here, we use a maximum length of h,
which is the grid spacing of the fixed grid, and a minimum length of h=3. The front restructuring in three-

dimensions is more involved than in two-dimensions and we must ensure that the addition and deletion of

points and elements does not lead to poorly shaped elements or unacceptable connections. For a more

detailed discussion of how the front is maintained, see Tryggvason et al. [22]. For more discussion about the

use of the ‘‘one-field’’ formulation for computations, including extensive validation and grid refinement

studies see Juric and Tryggvason [21] and Al-Rawahi and Tryggvason [1].
3.3. Parallelization

To make it possible to compute problems requiring fine grids and to improve performance, we have

implemented the code on parallel computers, using the message-passing interface (MPI) library [26]. Fig. 3

illustrates how the computational tasks are distributed among the processors used. For the conservation

equations we use a simple domain decomposition approach where the computational domain is divided

into even-sized sub-domains that are assigned to separate processors. The front computations are assigned
to one separate processor. This contrast to the approach used by Bunner [27] for his simulations of bubbly

flows, where the front computations were divided between the processors used for the solution of the

conservation equations. In that case, however, the front consisted of well-defined separate identities (the

bubbles) whereas here the front is one continuous structure. The grid processors are also responsible for

computing the heat sources for each element that lies in their domain. During each time step the front

processor sends front information to the grid processors that in turn send the calculated heat sources of the

elements lying in their domain to the front processor. The front processor receives the heat sources from

each grid processor individually. Two methods were tested for sending information from the front pro-
cessor to the grid processors. In the first approach the front processor sent information to each grid

processor only for the elements lying in its domain. This requires individual messages from the front



Fig. 3. Distribution of the computational load to the parallel processors. The implemented parallel computing strategy is to divide the

whole domain into even-sized sub-domains and assign each sub-domain to a processor. A separate processor is assigned to the front.

The total number of processors illustrated in the figure is 2� 2� 2+ 1¼ 9.
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processor to each grid processor. In the second method the front processor broadcasted the entire front to

all the grid processors in one message. Both methods were tested and it was found that the former method

required more CPU time, especially when the front is very large. We have therefore used the second ap-

proach in most of our simulations. The grid processors also exchange boundary information for the

temperature, velocities, and pressure. The pressure equation was solved by a parallelized multigrid code
developed by Bunner [27], and only a few modifications were needed to accommodate the boundary

conditions used in our code. More information about the multigrid code can be found in [27].

The simulations were done using the IBM SP2 machines at the Center for Parallel Computations (CPC)

at The University of Michigan. The speedup (defined as the time needed to solve the problem using a single

processor divided by the time needed using many processors) for a 1283 grid and 1, 2, 4, 8, 16 and 32

grid processors is shown in Fig. 4. As the number of grid processors increases the domain computed by each

processor becomes smaller, but the time consumed in exchanging boundary information increases. This is

heavily influenced by the use of the multigrid method since it requires more exchange of boundary in-
formation then other iterative methods. The time consumed in advecting the velocity, including solving the

pressure equation and finding the indicator function on the grid varies between 30% to 60% of the total

time, depending on how many processors are used. The front processor is generally lightly loaded. How-

ever, as the front grows the time needed for the restructuring of the front increases and can consume more

than 55% of the CPU time of the front processor.
3.4. The algorithm

Since the algorithm requires several steps, we list the various steps below in the order that they are

carried out in the actual code. The simulation starts with a given flow field and an initial temperature field

set equal to T ðx; y; zÞ ¼ /St. The integration of the governing equations is then carried out by the following

algorithm:

1. Calculate the unit normal vector, the curvature, the surface tension anisotropy and the kinetic mobility

anisotropy at the center of each front element.



Fig. 4. The speedup (the time needed to solve the problem using a single processor divided by the time needed using many processors)

versus the number of grid processors for the three-dimensional code. The simulations were carried out using a 1283 grid for 100 time

steps.
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2. If the inverse of the kinetic mobility effect is zero, find the temperature at the center of each front element

using Eq. (5). Otherwise, find the temperatures using Eqs. (2), (5) and (22).
3. Find the heat source at the center of each element using Eq. (22) and distribute the total heat sources for

each element to its corner points.

4. Distribute the heat source to the fixed grid using Eq. (23).

5. Integrate the temperature field in time using Eq. (1).

6. Advance the front points using Eq. (3).

7. Calculate the new indicator function / by distributing the jump in / to the grid and integrate as de-

scribed in Part I.

8. Advance the flow field by integrating the Navier–Stokes equation (7) in time, as described by Eq. (12),
and return to step 1 to start the next time step.
4. Validation

To validate and check the code, we computed the solidification of a sphere and compared the computed

results to analytical solutions for an spherically symmetric Stefan problem. The flow solver was validated

by comparison of numerical results for flow through a square array of stationary spheres with analytical
solutions for Stokes flow.

Numerical results from simulations of a three-dimensional Stefan problem are compared to the exact

solution derived by Paterson [28] for the solidification of a sphere with a heat sink at the center. The

strength of the heat sink increases with time as Q ¼ qt0:5, where t is time and q is a constant. The tem-

perature in the liquid phase is given by

T ðr; tÞ ¼ St 1

2
664 �

al
as

� �0:5
t0:5

r exp �r2

4t
as
al

� �
� p0:5

2
erfc r

2t0:5
as
al

� �0:5
� �

al
as

� �0:5
1
2k exp � k2 as

al

� �
� p0:5

2
erfc k as

al

� �0:5
� �

3
775 ð25Þ

and the temperature in the solid phase is given by
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T ðr; tÞ ¼ q
4p

t0:5

r
exp

�r2

4t

� ��
� 1

2k
expð � k2Þ þ p0:5

2
erfc

r
2t0:5

� ��
� erfcðkÞ

�	
: ð26Þ

The radius of the sphere as a function of time is

RfðtÞ ¼ 2kt0:5; ð27Þ

where k is the root of

q
4p

expð�k2Þ ¼ �4k3 �
2kSt kl

ks

1� as
al

� �0:5

kp0:5 exp k2 as
al

� �
erfc k as

al

� �0:5
� � : ð28Þ

Here a ¼ k=qcp and the subscripts �s� and �l� denote the solid and the liquid, respectively. The simulations

were carried out in 23 domain using three grid resolutions of 303, 603 and 1203. The heat sink was modeled

in the simulations by putting the center of the sphere in the center of a mesh cell and keeping the tem-

perature of the eight corner points equal to the analytical temperature. Fig. 5(a) shows the numerical and

the analytical results for the radius of the sphere as function of time when St ¼ 0:5, q ¼ �20, and the

material properties in the melt and the solid are equal (for those conditions, k ¼ 0:4518075). The numerical

results are in good agreement with the analytical results and the computed results converge to the analytical
solution as the grid resolution is increased. Fig. 5(b) and (c) shows the numerical and the analytical tem-

perature profiles for a line passing through the center of the sphere at times 0.0276, 0.2976, 0.5676 and

0.8376, increasing from left to right, using the 1203 grid. The numerical results accurately predict the an-

alytical temperature profiles.

To evaluate the flow solver and to assess how accurately the flow over a solid object is captured on a

fixed grid the Stokes flow over a simple cubic array of spheres was simulated and the results compared to

the analytical solution of Sangani and Acrivos [29]. The simulations were done in a fully periodic cube and

the flow was driven by an imposed pressure gradient. Fig. 6 shows the numerical results and the analytical
solutions for the nondimensionalized mean velocity as function of v ¼ c=cmax, where c is the volume

fraction. cmax ¼ p=6 is the maximum volume fraction possible for a simple cubic arrangement. Two grid

resolutions were used, with 523 and 1043 grid points. Both results are in a good agreement with the

analytical solution and the numerical results converge to the analytical solutions as the grid resolution is

increased.

To test the convergence of the full method for a complex dendritic structure over a range of resolutions is

problematic. Finer grids are too costly and coarser grids fail to represent the solution in any reasonable

way. To examine how the actual error behaves, we have therefore studied a simpler problem, selected to
yield reasonably good solution on coarse grids. The problem that we examine is the growth of an initially

spherical seed in an undercooled melt flow, where surface tension is sufficiently high so that no dendrites

start to appear. We place an initially spherical seed of diameter 0.2 in the middle of a 23 domain resolved by

83, 173, 313, and 613 grids, take the material properties of the solid and the melt equal, set the anisotropy

equal to zero, Pr ¼ 1:0, and St ¼ �0:2. This value of the undercooling is low enough so that we get es-

sentially fully converged solution on the finest grid and high enough so that the effects of the boundaries are

small. The seed grows more rapidly in the upstream direction, but remains nearly spherical and Fig. 7(a)

shows the upstream location of the interface (measured from the left inflow boundary), as a function of
time. Obviously the results are converging as the grid is refined. There is no exact solution for this problem

and to estimate the convergence rate, we assume that for the three finer grids the solution has reached its

asymptotic behavior and higher order terms can be neglected. If that is true, we can write d ¼ dexact þ Chn

for the position of the tip of the upstream growing dendrite. If we know the solution on two grids, dh and
d2h, then the solution can be extrapolated to h ¼ 0 by Richardson�s extrapolation. For n ¼ 1:85 any two of



Fig. 5. Numerical and analytical results for the solidification of a sphere with a heat sink at the center. The parameters used are:

St ¼ 0:5, q ¼ �20 in 23 domain. (a) The radius of the sphere as function of time using three grid sizes of 303, 603 and 1203. (b) The

temperature profiles along a line passing through the center at times 0.0276, 0.2976, 0.5676 and 0.8376, from left to right. (c) A blowup

of the temperature profiles near the interface. The interface temperature equals 0.
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the results for the three finer grids yield dexact ¼ 0:3181. In Fig. 7(b) the error is plotted versus the grid size

along with a line with slope 2. We note that the nearly second order convergence rate found here is better

than what is frequently observed for immersed boundary methods and we caution that in practical ap-

plications where the solution is obtained on a relatively coarse grid, the convergence is likely to be slower.
These simulations were done on a 1 GHz PENTIUM III PC and took about 1 min for the 83 grid; 4 min for

the 173 grid; 140 min for the 313 grid; and 68 h for the 613 grid.
5. Results

To show how the method described above handles complex interface shapes we have conducted two sets

of simulations of unsteady three-dimensional dendritic growth, using the initial conditions and computa-



Fig. 6. Numerical and analytical results for the flow over an array of spheres. The nondimensional mean velocity is plotted as a

function of v ¼ c=cmax, where c is the void fraction and cmax ¼ p=6 is the maximum void fraction for a cubical array.

Fig. 7. The convergence of the location of the upstream tip for the test problem described in the text. (a) The location versus time, (b)

the error versus the resolution.
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tional setup shown in Fig. 2. For the first set we have attempted to assess the resolution needed for accurate

simulations of complex dendritic growth by a resolution test and by a comparison with results for the

growth of a two-dimensional dendrite.

For the first set of simulations we take St ¼ �0:15, Pr ¼ 1:0, As ¼ 0:3, zero inverse kinetic mobility, and

equal material properties. The flow Peclet numbers are Pef ¼ 0:0 (no flow), Pef ¼ 0:002, and Pef ¼ 0:006.
The dimensions of the computational domain, in the units defined in Table 1, are 10,200n, where n is the

number of dimensions. The two-dimensional system was simulated using three grids with 1282, 2562 and
5122 grid points and the three-dimensional system was computed on 1283 and 2563 grids.

Fig. 8 shows the solidification front, the temperature, and the velocity around both two- and three-di-

mensional dendrites at a relatively early time. The results for the three-dimensional systems are shown in

the left column and for the two-dimensional ones in the column on the right hand side. In the top row

Pef ¼ 0:0 (no flow) and time ¼ 4.8� 106. In the middle row Pef ¼ 0; 0:002 and Pef ¼ 0:006 in the bottom



Fig. 8. The solidification front, the temperature, and the velocity around both two- and three-dimensional dendrites at a relatively

early time. Three-dimensional results are shown in the left column and two-dimensional results in the right column. In the top row

Pef ¼ 0:0 (no flow) and time¼ 4.8� 106. In the middle row Pef ¼ 0, 0.002 and 0.006 in the bottom row. Time is equal to 3.2� 106 for

the middle and the bottom row. Temperature is shown in gray, with the darker shades denoting colder material.
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row. Time is equal to 3.2� 106 for the middle and the bottom row. Temperature is shown in gray, with the

darker shades denoting colder material. The radius of the initial seed is the same for both the two- and

the three-dimensional case and both are perturbed by a wave with amplitude that is 20% of the radius of the
seed. It is clear in all cases that the three-dimensional dendrites grow significantly faster than their two-
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dimensional counterparts. A careful examination of the wake (for the middle and the bottom row) also

shows that the wake is smaller for the three-dimensional dendrites since the flow can go around the side of

the arms growing perpendicular to the flow, instead of having to go around the tip, as in two-dimensions.
Indeed, as already observed by Jeong et al. [16], the strong recirculating wakes behind two-dimensional

dendrites at late times (see Part I) are not seen for the three-dimensional ones (see Fig. 12).

The velocities of the dendrite tips are plotted versus time in Fig. 9 for a flow Peclet number of

Pef ¼ 0:002. Fig. 9(a) shows the tip velocities for the two-dimensional simulations computed using the three

grids. The tip velocity of the arm growing in the upstream direction, predicted using the 1282 grid, is about

13% lower than the prediction using the 2562 grid. The results from the 2562 and the 5122 grids are very
Fig. 9. The velocities of the tips of the dendrite arms for with the following parameters: St ¼ �0:15, Pr ¼ 1:0, Pef ¼ 0:002; equal

material properties and domain size of (10.24� 103)n. Fig. 9(a) shows the tips velocities for two-dimensional systems using 1282, 2562

and 5142 grids. Fig. 9(b) shows the tips velocities for three-dimensional systems using 1282 and 2562 grids.

Fig. 10. The effect of the Peclet number on the velocities of the tips of the dendrite arms. The parameters used in the simulations are:

St ¼ �0:15, As ¼ 0:3, Pr ¼ 1:0, zero inverse kinetic mobility, and equal material properties. Fig. 10(a) shows results for two-dimen-

sional systems and Fig. 10(b) shows results for three-dimensional systems.
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similar and the difference between the upstream tip velocities predicted on the two grids is less than 4%.

Fig. 9(b) shows the tip velocities for the three-dimensional dendrites, computed on both the 1282 and the

2562 grids. The difference between the upstream tip velocities predicted by the two grids is about 29%. If we
assume a similar convergence rate for the three-dimensional case as the two-dimensional one, we would

expect that the upstream tip velocity computed on a 5123 grid would probably result in less than 9% dif-

ference from the results on the 2563 grid. We have not, however, done a simulation using such a fine grid.

Fig. 10 shows the tip velocities versus time for Pef ¼ 0, 0.002 and 0.006. The result for the two-di-

mensional system are shown in Fig. 10(a) and the results for the three-dimensional dendrite are shown in

Fig. 10(b). The tip velocities without flow take much longer time to converge to a steady state value, es-

pecially in two-dimensions; therefore, only the steady state value of the tip velocity without flow are shown.

The slow convergence to the steady state value is probably because the initial conditions lead to large heat
release and since the Stefan number is low the heat diffuses away very slowly. In three-dimensions more

melt is available to take up the heat. For nonzero Peclet number the flow advects the heat away from the

growing dendrite, resulting in a faster convergence to steady state for the tip velocities. For the nonzero

Peclet number simulations, all the tip velocities have converged to essentially steady state values except the

velocities of the downstream tips in the three-dimensional simulations.

Table 2 shows the tip velocities of each dendrite arm, the radii of the tips, the Peclet numbers based on

the tip velocity, and the stability parameter, r�, for Pef ¼ 0:0 (no flow), 0.002 and 0.006 at the end of the

simulations. With the exception of the velocities of the downstream tips in the three-dimensional simula-
tions these are essentially steady-state values. Generally, the results show that increasing the melt flow

results in a higher velocity of the tip of the arm growing in the upstream direction (and therefore the tip

Peclet number) and a decrease in the tip radius. The results for the three- and the two-dimensional systems

both show the same qualitative dependency of the velocities of the dendrite tips on the flow Peclet number –

although the percentage changes are different – with the exception of the downstream arm. For the three-

dimensional flow the downstream tip velocity decreases with increasing flow Peclet number, reflecting the
Table 2

Average tips velocities, radii, Peclet numbers and stability parameters (r�) as function of flow Peclet number in three and two-di-

mensional simulations

Three-dimensional results Two-dimensional results

Pef ¼ 0 Pef ¼ 0:002 Pef ¼ 0:006 Pef ¼ 0 Pef ¼ 0:002 Pef ¼ 0:006

Up-stream tip

V � 103 0.358 0.67 0.935 0.08 0.317 0.55

R 240 171 163 450 228 180

Pet 0.086 0.114 0.153 0.04 0.072 0.096

r� 0.10 0.12 0.08 0.12 0.12 0.115

Down-stream tip

V � 103 0.358 0.33 0.25 0.08 0.08 0.1

R 240 186 227 450 320 320

Pet 0.086 0.06 0.06 0.04 0.026 0.032

r� 0.10 0.15 0.16 0.12 0.24 0.21

Perpendicular tip

V � 103 0.358 0.5 0.625 0.08 0.186 0.268

R 240 182 175 450 268 242

Pet 0.09 0.09 0.11 0.04 0.05 0.07

r� 0.10 0.12 0.105 0.12 0.15 0.12

The parameters used in these simulations are: St ¼ �0:15, Pr ¼ 1:0, As ¼ 0:3, zero inverse kinetic mobility, and equal material

properties.
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increased flow of heat from the upstream side and the reduced undercooling in the wake. The two-di-

mensional results are, however, strongly influenced by a recirculation in the wake and, as shown in Part I,

increased flow rate results in a jet carrying flow from downstream toward the dendrite tip. This behavior is
unlikely to be seen in real experiments and must therefore be regarded as an anomaly of two-dimensional

systems. The dependency of the growth of the upstream arms on the fluid Peclet number for two-dimen-

sional systems were also examined in Part I where it was shown that these trends agree with experimental

and theoretical results. The stability parameter, r�, of the upstream and the perpendicular tips are almost

the same, but usually slightly higher for the downstream one, possibly because the arm has not reached a

steady-state velocity. The stability parameter for the upstream tip is essentially independent of Pef in our

results. The dependency of r� on the flow remains a somewhat unresolved issue with computations and

experiments giving the opposite trend [17]. Jeong et al. [17] found a slight decrease of r� for the upstream tip
with the incoming flow velocity, but the dependency was week.

The three- and the two-dimensional results in Table 2 show the same trend for the effect of the flow on

the behavior of the dendrite tips, but the percentage effect of the flow is quite different. In the three-

dimensional simulations, introducing a melt flow of Pef ¼ 0:002 and 0.006 result in an increase of the

upstream tip velocity by 90% and 160%, over a tips velocity in the absence of flow. In the two-dimensional

simulations, on the other hand, the introduction of melt flow results in an increase of the upstream tip

velocity by a factor of 3.0 and 5.9 for Pef ¼ 0:002 and 0.006, respectively. The much larger influence of the

flow on the tip velocity for the two-dimensional system than the three-dimensional one is presumably due to
the much lower tip velocity without flow in the two-dimensional case. In two-dimensions there is much

smaller volume of undercooled liquid available to receive the latent head released by the solidification than

in three-dimension and the growth is therefore slower. When flow is added and undercooled liquid is made

available to absorb the heat, the difference between the flow and the no-flow case is greater in two-

dimensions. The tip velocity without flow in the three-dimensional simulation is about 4.5 times higher than

the corresponding tip velocity in the two-dimensional simulation. In three-dimensions the ratios of the

inflow velocity of the undercooled liquid to the tip velocity without flow (Uin=Vtip;U¼0) corresponding to

Pef ¼ 0:002 and 0.006 are about 5.5 and 16.5, respectively; while in two-dimensional simulations these
ratios are 25 and 75, respectively. Similarly the effect of the flow on the upstream and perpendicular tips

radii and Peclet numbers is stronger in the two-dimensional simulations.

The focus of the example above was on the relatively early growth. We conclude this section by showing

two examples of simulations where we have followed the growth to much larger amplitude. Here

St ¼ �0:25, As ¼ 0:4, Pr ¼ 0:1, zero inverse kinetic mobility, equal material properties, and the computa-

tional domain is 28,0003 nondimensional units, resolved by a 2563 grid. The two flow Peclet numbers are

Pef ¼ 0:0015 and 0.003. Although results for two-dimensional systems at the same parameters indicates that

the overall shape of the dendrite is well predicted we expect that we would need about twice the resolution
used here to obtain fully converged tip velocities. In Fig. 11 the Pef ¼ 0:0015 dendrite is shown at

times ¼ 0, 0.9, 1.8, 2.7, 4.5, 5.4, 6.12 and 7.2� 106. Fig. 12 shows the temperature and the flow fields

around the Pef ¼ 0:003 dendrite at time ¼ 6.83� 106. On the left the velocity and temperature are shown in

a plane through the center of the computational domain and in the frame on the right in a plane cutting

through a side branch of the dendrite, growing toward the viewer. In addition to leading to significant

asymmetry in the growth of the main dendritic arms, the flow strongly affects the growth of side branches

on the arm growing perpendicularly to the flow. Essentially all the side branches grow on the upstream side,

some of them sufficiently fast to prevent growth of side branches from the upstream arm. This figure
illustrates the importance of three-dimensional simulations since in two-dimensional simulations the flow

has to go around the perpendicular arms and therefore has less effect on the side branches of these arms. See

also Jeong et al. [16], where the difference is discussed in more detail. The temperature and the flow fields

around the side branches of the perpendicular arms looks similar to the fields around the upstream arm.

The temperature of this flow is, however, affected by the heat released from the upstream arm.



Fig. 11. Growth of a dendrite with Pef ¼ 0:0015. The dendrite is shown at times¼ 0, 0.9, 1.8, 2.7, 4.5, 5.4, 6.12 and 7.2� 106. The

parameters used here are: St ¼ �0:25, As ¼ 0:4, Pr ¼ 0:1, zero inverse kinetic mobility, and equal material properties.

Fig. 12. The temperature and the velocity fields around a dendrite with Pef ¼ 0:003 at time¼ 6.83� 106. The parameters used in the

simulation are: St ¼ �0:25, As ¼ 0:4, Pr ¼ 0:1, zero inverse kinetic mobility, and equal material properties. The left frame shows the

temperature and the velocity in a plane through the center of the domain, the right frame shows the temperature and the velocity in a

plane cutting through the arm growing perpendicular to the flow, toward the reader.
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6. Conclusions

We have presented a front tracking method for the simulations of three-dimensional dendritic growth

with convection. The method is an extension of the method for two-dimensional systems presented by Al-

Rawahi and Tryggvason [1] and the results are similar. The introduction of melt flow results in an increase
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of the growth rate of the arm growing into the flow, promoting more side branch formation on the up-

stream side. The flow also results in a reduction of the growth rate of the downstream arm. However, the

effect of the flow on the downstream arms is smaller here than in two-dimensions, since the fluid can go
around the side of the dendrite arms growing perpendicular to the flow, instead of having to go around the

tip of these arms. The results also show that a fairly fine grid resolution is needed for accurate results.

Although we believe – based on both the tests presented here as well our experience in simulating two-

dimensional systems – that the results presented here accurately represent the behavior of a growing

dendrite for the parameters used, it is clear that a 2563 uniform grid is near the acceptable minimum needed

and a finer grid would be desirable for more detailed studies. Although we did not examine the same system

as Jeong et al. [16,17], our results show the same trend, including the smaller influence of the flow on the

downstream arms as compared with two-dimensional flows.
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